TR-BDF2 FOR STABLE AMERICAN OPTION PRICING

FABIEN LE FLOC’H

ABSTRACT. The Trapezoidal Rule with Second Order Backward Difference
Formula (TR-BDF2) finite difference scheme is applied to the Black-Scholes-
Merton PDE on a non uniform grid. American Option Convergence and Greeks
stability is studied against studied against popular alternatives, namely Crank-
Nicolson and Rannacher time-marching.

1. INTRODUCTION

It is well known that discontinuities in the payoff function or its derivatives can
cause inaccuracies for numerical schemes when financial contracts are priced. For
a vanilla (or a digital option), to avoid discretization errors, several ad-hoc reme-
dies can be applied, for example, placing strike on node, or applying smoothing or
projection techniques to the payoff [Pooley et al., 2003, Tavella and Randall, 2000].
Additionally, the scheme itself can introduce unwelcomed inaccuracies. The Crank-
Nicolson scheme can introduce spurious oscillations in the greeks [Giles and Carter, 2006].
Rannacher time-marching is a known fix for european options. But we show here
that it does not work as well for American (or Bermudan) options. In contrast,
the Trapezoidal Rule with Second Order Backward Difference Formula (TR-BDF2)
does not produce any spurious oscillations for European, Bermudan or American
options, and is, like backward Euler (and unlike Crank-Nicolson), mathematically
L-stable.

Estimating precisely the gamma and delta is key as those greeks are the most
commonly used for hedging.

Where is TR-BDF2 being used? TR-BDF2 has been in use for more than 25
years in various domains. It was first used in electronics by Bank et al. to solve
the coupled system of nonlinear partial differential equations that model the tran-
sient behavior of silicon VLSI device structures [Bank et al., 1985]. It remains a
popular scheme in electronics [Gardner et al., 2004] and has been studied exten-
sively [Malhotra Jogesh et al., 1994, Wild, 1993]. In biology, Tyson et al. used the
scheme to solve a chemotaxis model [Tyson et al., 2000]. In mechanical engineer-
ing, Bathe studied its application for the transient response solution of structures
when large deformations and long time durations are considered [Bathe, 2007].
The author is unaware of any use of TR-BDF2 within computational finance.

2. BACKGROUND
The Black-Scholes-Merton partial differential equation is [Shreve, 2004]:

2
(1) %{(&t) + u*(w,t)m%(m,t) + %o*(m,t)Qa:Q%(x7t) =r(x,t)f(z,t)
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where x is the underlying price, p* is the underlying drift, ¢* its volatility and
r the interest rate. Using u = p*x and o = o*z, this can be rewritten as:

0 0 0?
@ P gl + oS w0 = r 0
with terminal condition:
£, 7) = F(a)

Let’s discretize on the lattice defined by:

(Sci)i:o,..,m , 0 =Ty — Ti—1

(tj)j=0,m > G =1t —tj—1
The value of the function f in the lattice node (i,j) corresponding to the z-
value z; and the t-value t; (i.e. f(z;,t;)) is denoted by f; ;. Similarly, 41, ; denotes
(i ), of ; denotes o (x4, t;)%, and r; ; denotes 7(z;, t;)
Forward-looking difference operator:
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Backward-looking difference operator:
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Central difference operator:
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_ Jig — fij—
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G
(8) D fij = 7fi’j+l_ ~ Jij
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3. TR-BDF2 SCHEME

3.1. What is TR-BDF2? The Trapezoidal Rule with second order Backward
Difference Formula (TR-BDF2) is a second order accurate fully implicit Runge
Kutta method. It is a one step method that is L-stable. Crank-Nicolson itself
is only A-stable [Dharmaraja, 2007]. In practice, the non L-stability manifests
itself by spurious oscillations in the first and second space derivatives with Crank-
Nicolson. This phenomenon will not appear with TR-BDF2 or with Backward
Euler (which is also L-stable).
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There are two stages. The first stage is the trapezoidal method (Crank-Nicolson)
applied from t,, to t,,+q =t +a(y41. The second stage is the 2 steps BDF method
applied to the first stage output and the initial data.

Let £ be the Black-Scholes-Merton operator defined by:

© L) = e Lol e e

oxr 2 Oz?
‘We have:
of

(10) E(xat) :'C(f(xvt)axat)

The TR-BDF2 method can be written as [LeVeque, 2007]:

(11) = ot S L) + L)

2

(12) A (1f*—(1‘a)2fn+<1—a><ﬁ<fnﬂ>)

2—a \«a «

Even though there are 2 stages, this is still a 1 step method. Any full step
only depends on the previous full step. This is an important difference with the
standard second order backward difference scheme (BDF2) that depends on the two
previous timesteps and can lose its accuracy [Windcliff et al., 2001] with variable
timesteps and linear complimentary problems. This scheme does not suffer from
such drawbacks.

BDF2 4 4 .
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TR-BDF2
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F1GURE 1. BDF2 has overlapping input over different time steps
while TR-BDF2 has not

3.2. Choice of a. There are 2 popular choices for a:
1
a= -

2
a:2—\/§

The choice of a = % makes the equation simpler [LeVeque, 2007], while the choice
of e = 2 — /2 is known to give the least truncation error among all «, proportional
Jacobians [Bank et al., 1985], and the largest stability region [Dharmaraja et al., 2009].
With proportional Jacobians the underlying algorithm can be faster.

In practice, we did not find any significant difference in accuracy between the
two when TR-BDF?2 is applied to the Black-Scholes PDE.
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3.3. Discretization of the Black-Scholes PDE. For 0 <i<m , 0<j <n

Let £;; = (rijI — pijDy — 507 ,;D2) be the discrete differential operator.
The Trapezoidal stage is:

1
(13) D fijra = §(£i,j+1f¢,j+1 + Lijrafijra)

+ g _ fig+roa—Ffii _ fijta—Ffij
where D, f; j = L T Taem

ForO<i<m,0<j<n

@i j+afi-1j+atbijralfijratcijrafittita = =i fio1j+1+0 1 fijr1—Cigrfivn
with:

(14) G5 = m (/ii»j — U(ii)

(15) bij = aci +3 ( " 5i5+>

(16) Cij = fm (Mm‘ + (;i)

The BDF2 stage is:

(1-a)

1
(18) 2—a)fij— afz‘,Ha + fijr1=—1—a)(j+1L:;fi;

fij+a is the result of the first stage. For the second stage we have:

1 1 1—a)?
a;jfi—1,j +bijfij+cijfit1j = 5o (afi,j+a - <afi,j+1>

with:
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-« o,
20 b’L R 1 . »J i
(20) J + B 7OZCJ+1 < it +r J)

l1—a 1 ol
21 = — . &J is
(21) Cirg 2—04CJ+157;+1+57: (57:4-1 +M’j>
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4. BOUNDARY CONDITIONS

We consider here the boundary condition where we assume that % =0 at
the boundaries. This is true for all payoffs linear at the boundaries, which is a
reasonable assumption for most payoffs [Windcliff et al., 2004]. The Black-Scholes
equation becomes:

of of

(22) a(x,t) + u(x,t)a—x(a:,t) =r(x,t)f(z,t)

We will discretize the derivative by an order 1 in x approximation. This is rea-
sonable because the first order error in x is proportional to the gamma, which we
assumed to be 0:

Jitr,j — fij
23 D+ = 5] 5J
( ) wf,] 5i+1

4.1. Trapezoidal Stage. Lower Boundary:

(24) Df foj+a = 5 (Lojrifigri + Lojrafojta)

5

*
b07j+af0,j+a + CO,j+af1,j+a = bo,j+1f0,j+1 - CO,j+1f1,j+1

with:
(25) bo,j = OéCjL—a + % <ro,j + 'u;lj>
o o= ag =3 (52
1) o =11
Upper Boundary:
am j+afm-1j+a T 0mj+rafmjtra = —Gm j+1fm— 41 + bjn,j+1fm7j+1
with:
(28) .
1 1 i
w =g =3 (= 52)
4.2. BDF2 Stage. Lower boundary:
(31) Lo = (ro;I — po Dy)
2=a)fos - éfo’”“ + Mf@vﬂ‘rl =—(1—a)¢+1Lojfo
We have:

bo,j fo,j + cojf15 =

1 1 (1-a)?
5 a (afo,jm - afo,jﬂ)
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with:
l—a. (g
(32) bO,j = 1 + m<j+1 (51] + T()’j)
l-« Ho,5
(33) Coj = —ij-H ( 51J>

Upper boundary:

1 /1 (1-a)?
Amjfm—1,j +bmjfm; = C (afm,j+a - Tfm,j+1

with:
l-« Hm,j5
l-« Hm,j
35 b =14+ 57— (— ’]—H“m‘)
( ) »J 2_a<J+1 S »J

5. AMERICAN OPTION SPECIFICS

The early exercise feature of the option adds a free boundary on top of the
Black-Scholes partial differential equation. Let f be the option price, the following
system of partial differential inequalities is satified [Lamberton and Lapeyre, 1996]:

(36) %(m) 4 u(:c,t)%(x,t) 4 %a(x,t)Q%(x,t) < (@, ) f(2,1)

(37)
(‘Zf(x, t) + ule, t)%(x, 0+ o, t)?%(x, 1) — vz, 6)f (x, t)) (f—F)=0
subject to:

(38) f>F

(39) f(z,T) = F(z)

There are many ways to solve the free boundary problem, the most popular being
the Brennan and Schwartz algorithm [Brennan and Schwartz, 1977] (with known
shortcomings [Jaillet et al., 1990]), Front-Tracking [Pantawopoulos et al., 1996], the
Penalty Method [Nielsen et al., 2002], Operator Splitting [Ikonen and Toivanen, 2004],
and Projected SOR [Wilmott et al., 1993].

The simplest way is to solve the tridiagonal system without considering the free
boundary and to then apply the early exercise condition through currentPrice
= max(payoff, currentPrice). While this keeps the second order accuracy for
explicit scheme (because the number of time steps has to be proportional to the
square of the number of space steps for stability), it is only first order accurate in
time in general [O’Sullivan and O’Sullivan, 2009].

As order-2 method, for the sake of simplicity, we will only consider Projected
SOR. The results should be similar with other solving techniques. In the case of
TR-BDF2, Projected SOR is applied at each stage.
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6. ACCURACY AGAINST CRANK-NICOLSON

6.1. Convergence for a fixed space step. As [O’Sullivan and O’Sullivan, 2009],
we look at the convergence for a 1 year American Put option of strike K = 100 with
a spot S = 100, a discount rate of 5%, and a volatility of 20%. We fix the space
step size at 1.0. This corresponds to 500 space steps. Note that this places the
strike and the spot on the grid, which is important to avoid introducing additional
errors from the payoff in the grid [Pooley et al., 2003].

We use the same theoretical value of 6.0874933186 as in their paper. We veri-
fied its accuracy by an explicit scheme going progressively to 5 million timesteps
(6.087493609042786). Note that this is not the exact american option price because
we have fixed the space step size.

10 2
10 3
Scheme
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= RAN
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£ — RE_TRBDF2
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S — SOR_CN
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F1GURE 2. Convergence of TR-BDF2 and Crank-Nicolson for an
American Put. CN denotes the Crank-Nicolson scheme with
the order-1 approximation for the free boundary problem, TR-
BDF2 is the TR-BDF2 scheme with the same order-1 approx-
imation. SOR_CN is the Crank-Nicolson scheme solved by
SOR, SOR_-TRBDF2 is the TR-BDF2 scheme solved by SOR.
RE_TRBDF2 is Richardson extrapolation in time applied to TR-
BDF2 with the order-1 approximation. Finally, SOR_.C_RAN is
Rannacher time-marching procedure applied at each time step (see
7.2) solved by SOR.

Richardson extrapolation allows to gain an order in magnitude for the conver-
gence of the order-1 free boundary approximation method. For the sake of sim-
plicity we applied Richardson extrapolation the conventional way, not continuously
like [O’Sullivan and O’Sullivan, 2009], but the conclusion would be the same with
their method.
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From Table 1, we see that TR-BDF2 is about twice as slow as Crank-Nicolson.
This is because we have to solve twice per timestep. However, it is always as
accurate or more accurate than Crank-Nicolson. We will see in the following sections
why TR-BDF?2 is an interesting scheme, even though it is slower.

6.2. Convergence on Various Grid Geometries. We now look at the conver-
gence for a 1 year American Put option of strike K = 100 with a spot S = 100, a
discount rate of 5%, and a volatility of 40%. We choose more practical boundaries
for the grid:

Ty, = SeT
zo = Se 37T

It corresponds to 3 standard deviations up and down the spot. We also make sure
that the strike is on the grid by slightly shifting the grid if necessary.We fix the
ratio A = 7 to 1 and 4 and compare the scheme maximum price error.

In our settings, A = (z,, — xo)j—;. The reference is an american option price
obtained by an explicit scheme on a very fine grid (4K space steps and 4M time
steps). We pay attention to place the strike and the spot on the grid.

1072 -
1072~
1073~
) Scheme ©10°%- Scheme
[S] o
s CN s CN
£ o- TRBDF2 £ TRBDF2
o — RAN o — RAN
o @107~
o — SOR_CN o — SOR_CN
= SOR_TRBDF2 = SOR_TRBDF2
810°- ©
o SOR_C_RAN o SOR_C_RAN
1075 -
10° 10° 10° 10°
number of space steps number of space steps
(A) A=1.0 (B) A=4.0

F1GURE 3. Maximum Error in Price of an American Put Option
with a fixed A

Again, we see from Figure 8, that the convergence of TR-BDF2 is at least as
good as the convergence of Crank-Nicolson. When A grows, TR-BDF2 maximum
price error is lower because it does not oscillate like Crank-Nicolson. When A is
small, the improvements of SOR vs the order-1 method is less apparent, because
the number of timesteps grows enough to compensate the order-1 time precision.

6.3. Accuracy on Random Grid Geometries. We consider the same Ameri-
can Put Option as in 6.2 but we now select the the time and space discretisation
randomly. This kind of test tells us how robust are the various schemes in a variety
of practical situations. We compute the relative error in price of the various finite
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difference schemes on grids composed of 100 randomly chosen number of space steps
and 100 randomly chosen number of time steps and look at the distribution of the
error through a box-and-whisker plot (Figure 4).
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FIGURE 4. Error in the price of an American Put option on ran-
dom grids

SOR_-TRBDF?2 distribution is lower and more compact than SOR_CN. SOR_RAN
75th percentile is lower than SOR_CN one because of the Rannacher time-marching
improves Crank-Nicolson accuracy on grids with large A, but its 25th percentile is
higher, because the few first backward euler steps are order-1 only and thus lessen
the accuracy when A is low. SOR_C_RAN behaves similarly to SOR_RAN, albeit
with a loss of the overall precision because the backward euler step is applied much
more often. We know from 6.2 that the non-SOR solvers are only order-1 accurate,
and don’t allow to deduce much about the underlying schemes. Figure 4 confirms
it.

6.4. Accuracy on Random Non-Uniform Grid Geometries. It is common
for more complex payoffs to use a non uniform grid with more points near the payoff
discontinuities [Tavella and Randall, 2000]. We consider the same test as in 6.3 but
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we now use a hyperbolic space discretization (with strike K on the grid):

z; = K 4+ asinh(ci (1 — &) + c2&)

f=—
m
o1 T — K
clzsmhli
«
L 1, — K
stmhlL
«

where « is a parameter that determines the uniformity of the grid. The grid is
highly non-uniform when o < x,,, — zg, with a high concentration of points around
the strike K. Figure 5a is similar to Figure 4. SOR_TRBDF2 error distribution

[+ Q
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5] 5]
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Scheme Scheme
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FIGURE 5. Error in the price of an American Put option on ran-
dom non-uniform grids

is placed even lower than with a uniform grid and behaves better than SOR_CN
or SOR_RAN. This is because with a non-uniform grid, the ratio ‘fi—f can be much
smaller than with a uniform grid when we consider the same number of space steps.
In the case of SOR_CN, the price will therefore be perturbed by Crank-Nicolson
oscillations more often. This is confirmed by Figure 5b where SOR_TRBDF?2 clearly
outperforms SOR_CN and SOR_RAN. Crank-Nicolson is not very well adapted to

highly non-uniform grids and loses one order of accuracy in our settings.

7. GREEKS STABILITY

7.1. Gamma for an American Put. It is well known that Crank-Nicolson can
distort the greeks because of oscillations in the scheme [Giles and Carter, 2006].
TR-BDF2 does not have this issue. As an example, we give the I' of an at the
money 1 year American Put option of strike 100, 40% volatility , 5% interest rate
on a grid composed of 500 space steps and 80 time steps. The boundary is set up
the same way as in 6.2. The free boundary problem is solved by SOR.

The I' with TR-BDF2 is smooth while Crank-Nicolson presents oscillations at
the payoff discontinuity and Rannacher has oscillations near the early exercise.
The T' is smooth again when Rannacher time-marching is applied continuously.
The At-the-money Rannacher graphs use 40 time steps while Crank-Nicolson uses
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FIGURE 6. I of an At-The-Money American Put Option. Crank-
Nicolson is shown with 80 time steps, others are with 40 time steps.

80 time steps, because the oscillations with Rannacher time-marching are smaller
in amplitude and would be less visible with 80 time steps. TR-BDF2 is the same

with 40 or 80 time steps.
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FIGURE 7. I of an In-The-Money American Put Option with

strike at 160 and 80 time steps.
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When the option is largely in the money, the early exercise oscillations are
stronger, and visible with a lower A.

7.2. The problem with Rannacher time-marching. The Rannacher scheme
introduces 2 or 4 half steps using backward Euler before doing Crank-Nicolson. This
removes the oscillations in the greeks for european options [Giles and Carter, 2006].
But this is not true for American (or Bermudan) options as shown in Figures 6¢
and T7c.

Those oscillations were also present in the Crank-Nicolson scheme, but the os-
cillations resulting from the payoff discontinuity were much more important in
comparison. The early exercise oscillations are stronger in Crank-Nicolson when
the option is largely in the money. Figure 7a shows the phenomenon with a strike
at 160 instead of 100 on 500 space steps and 80 time steps.

In order to have smooth greeks for American options, one would need to add
backward Euler steps after every potential discontinuity introduced by the early
exercise feature (see Figures 6d and 7d). The problem is that the resulting scheme
would then be about 3 times slower as Crank-Nicolson (see Table 1) and lose 1
order of accuracy (see Figure 2).

7.3. Gamma Accuracy on Various Grid Geometries. For an option as simple
as an American Put, the greeks will be acceptably smooth with Crank-Nicolson
when the ratio A = ™ is low enough. We measure the maximum relative error
of T of the same option as in 6.2. We restrict the error computation to the spot
interval [60, 300] because the discontinuity in the I" before the spot reaches 60 would
make the real maximum error not measurable (see Figure 8a). The reference T' is
obtained using an explicit scheme on a very fine grid. With TR-BDF2 the error

10'- 10'-
£ £
0_ 0_
% 10 Lambda % 10
] 0.5 >
£ — 1 £ =T
S — 2 8
@ 4 @
(5] e (5]
2107 8 2107
© &
o D E
107~ 10°- \
| | | |
10 10° 10 10°
number of space steps number of space steps
(A) Crank-Nicolson (B) TR-BDF2

FIGURE 8. Maximum Relative Error of I" for an American Put
Option with various A

in T' is independent of the ratio A while with Crank-Nicolson I' is less precise as

Lambda
0.5
— 1

2
— 4
8
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A grows. Interestingly with high A Crank-Nicolson loses some precision when the
number of space steps increases.

8. BERMUDAN OPTION

8.1. When BDF2 breaks. The second backward difference (BDF2) scheme, an-
other popular L-stable scheme, while simpler than TR-BDF2 has been shown not
to be a good candidate in option pricing in general [Windcliff et al., 2001]. We give
the example of a simple Bermudan option where BDF2 breaks down.

We consider an at the money 1 year Bermudan Put option of strike 100, 40%
volatility , 5% interest rate than can be exercised at 6 months and at 1 year. The
theoretical price of 13.386303 has been computed using an explicit finite differ-
ence scheme with more than 4 millions time steps and 5120 space steps. BDF2 is
initialized with one backward Euler step.

The convergence is similar with SOR or with the order-1 free boundary ap-
proximation because there is only 1 date where the linear complimentary problem
appears.

1072+ /, = — 1072 -
X >
0107 \ Scheme 0107
Q Q
a CN a
—4_ -4 _
£10 TRBDF2 £10
S — BDF2 2
01079 "= ~ SOR_CN 01079
2 SOR_TRBDF2 2
® 16— © 16—
10 10
) SOR_BDF2 o
| ) | ) | i | )
10° 10° 10° 10°
number of space steps number of space steps
(A) TR-BDF2 vs Crank-Nicolson vs BDF2 (B) BDF2Rr vs BDF2

F1GURE 9. Relative Error of the price of a Bermudan Put Option
on a grid with A = 0.5

BDF2 converges, but to a wrong price (13.506 instead of 13.386)! TR-BDF2
has no such issue and converges as well as Crank-Nicolson in an order-2 manner to
the correct price. This example shows a key difference between BDF2, a multistep
scheme, and TR-BDF2, a 1-step scheme.

In this simple example, there is a simple fix for BDF2, one need to restart BDF2
just before the early exercise date, i.e. to apply a backward Euler step instead of
a BDF2 step at this date. We call this scheme BDF2g. Another similar example
where naive BDF2 fails is the case of an American option with discrete dividends,
as the exercise boundary is then discontinuous. [Oosterlee et al., 2008] also fix this
by restarting the scheme at each dividend date.

In more complex use cases like the Shout option in [Windcliff et al., 2001], the
fix might not be so trivial. In contrast, TR-BDF2 just works.

8.2. Gamma for a Bermudan Put. We look again at I' on a grid composed of
500 space steps and 80 time steps. We use the same at the money 1 year Bermudan

Scheme
TRBDF2

— BDF2
BDF2_R
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F1GURE 10. T of an At-The-Money Bermudan Put Option.

Put option of strike 100, 40% volatility , 5% interest rate. The boundary is set up
the same way as in 6.2.

Again, the Rannacher time-marching applied only at maturity does not fix all
Crank-Nicolson oscillations. If we applied Rannacher time-marching at all bermu-
dan exercise dates, we would then have a smooth I' in a similar fashion to TR-BDF2.
For Bermudan options, the Rannacher time-marching requires the knowledge of the
early exercise dates to be efficient. [D’Halluin et al., 2001] observed the same phe-
nomenon on Callable Bonds. In contrast, TR-BDF2 just works. This flexibility of
TR-BDF2 can be important if one is led to solve other kind of linear complimentary
problems.

9. CONCLUSION

We have shown how the TR-BDF2 scheme can be applied to option pricing.
It does not suffer from Crank-Nicolson oscillations problem, particularly visible in
the greeks. It is more resilient to the grid geometry and to the underlying PDE
in general. And the Rannacher time-marching, while an interesting fix of Crank-
Nicolson for European options, does not work as well for American options.

|
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FABIEN LE FLOC’H

TimeSteps | Scheme Price Error Time(ms)
20 | CN 6.04942861 | 3.81E-02 0.29
TRBDF2 6.06077167 | 2.67TE-02 0.53
SOR_CN 6.07286091 | 1.46E-02 5.54
SOR_C_RAN 6.07849059 | 9.00E-03 6.35
SOR_TRBDF2 | 6.08758776 | 9.44E-05 6.18

40 | CN 6.07460914 | 1.29E-02 0.53
TRBDF2 6.07384972 | 1.36E-02 1.01
SOR_CN 6.08691135 | 5.82E-04 5.92
SOR_C_RAN 6.08288455 | 4.61E-03 7.47
SOR_TRBDF2 | 6.08748937 | 3.95E-06 6.48
RE_TRBDF?2 6.08692777 | 5.66E-04 1.54

80 | CN 6.08094463 | 6.55E-03 1.01
TRBDF2 6.08067397 | 6.82E-03 2.07
SOR_CN 6.08716972 | 3.24E-04 6.31
SOR_C_RAN 6.08517794 | 2.32E-03 11.15
SOR_TRBDF2 | 6.08747789 | 1.54E-05 9.03
RE_TRBDF2 6.08749821 | 4.89E-06 3.07

160 | CN 6.08417165 | 3.32E-03 2.10
TRBDF2 6.08409115 | 3.40E-03 4.28
SOR_CN 6.08739222 | 1.01E-04 9.56
SOR_C_RAN 6.08633172 | 1.16E-03 18.68
SOR_TRBDF2 | 6.08747636 | 1.70E-05 14.50
RE_TRBDF2 6.08750834 | 1.50E-05 6.35

320 | CN 6.08580185 | 1.69E-03 4.01
TRBDF2 6.08577535 | 1.72E-03 8.23
SOR_CN 6.08743534 | 5.80E-05 15.31
SOR_C_RAN 6.08691611 | 5.77E-04 43.88
SOR_TRBDF2 | 6.08749794 | 4.62E-06 25.98
RE_TRBDEF2 6.08745954 | 3.38E-05 12.52

640 | CN 6.08665664 | 8.37TE-04 7.92
TRBDF2 6.08665101 | 8.42E-04 16.11
SOR_CN 6.08748014 | 1.32E-05 27.65
SOR_C_RAN 6.08720846 | 2.85E-04 66.32
SOR_TRBDF2 | 6.08748857 | 4.75E-06 50.62
RE_TRBDF2 6.08752666 | 3.33E-05 24.34

1280 | CN 6.08707319 | 4.20E-04 16.27
TRBDF2 6.08707162 | 4.22E-04 34.63
SOR_CN 6.08748889 | 4.43E-06 53.06
SOR_C_RAN 6.08735050 | 1.43E-04 125.21
SOR_TRBDF2 | 6.08749030 | 3.02E-06 95.16
RE_TRBDF2 6.08749223 | 1.09E-06 50.74

2560 | CN 6.08728186 | 2.11E-04 32.16
TRBDF2 6.08728145 | 2.12E-04 64.80
SOR_CN 6.08749012 | 3.20E-06 98.03
SOR_C_RAN 6.08742112 | 7.22E-05 266.09
SOR_TRBDF2 | 6.08749319 | 1.28E-07 204.27
RE_TRBDF2 6.08749128 | 2.04E-06 99.43

5120 | CN 6.08738849 | 1.05E-04 66.09
TRBDF2 6.08738832 | 1.05E-04 130.70
SOR_CN 6.08749250 | 8.15E-07 222.25
SOR_C_RAN 6.08745713 | 3.62E-05 519.11
SOR_TRBDF2 | 6.08749394 | 6.22E-07 382.39
RE_TRBDEF2 6.08749518 | 1.86E-06 195.50

10240 | CN 6.08744098 | 5.23E-05 133.65
TRBDF2 6.08744095 | 5.24E-05 261.87
SOR_CN 6.08749312 | 2.03E-07 400.15
SOR_C_RAN 6.08747538 | 1.79E-05 1031.23
SOR_TRBDF2 | 6.08749332 | 5.65E-09 757.89
RE_TRBDF2 6.08749358 | 2.58E-07 392.57

TABLE 1. TR-BDF2 and Crank-Nicolson Convergence Table for
an American Put, the reference value of 6.0874933186 has been
obtained via [O’Sullivan and O’Sullivan, 2009]. CN denotes the
Crank-Nicolson scheme with the order-1 approximation for the
free boundary problem, TR-BDF2 is the TR-BDF2 scheme with
the same order-1 approximation. SOR_CN is the Crank-Nicolson
scheme solved by SOR, SOR_-TRBDF2 is the TR-BDF2 scheme
solved by SOR. RE_.TRBDF2 is Richardson extrapolation in time
applied to TR-BDF2 with the order-1 approximation. Finally,
SOR_C_RAN is Rannacher time marching applied at each time
step (see 7.2) solved by SOR.



