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Abstract This paper describes an adaptive Filon quadrature for the computation of option prices under the Heston
stochastic volatility model. A comparison against popular alternatives in terms of accuracy and performance is then
presented, ending with the concrete case of model calibration on different market data.
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1. Introduction

The valuation of European options under the Heston model, or under other stochastic volatility
models where the characteristic function is known analytically, involves the computation of
a Fourier transform type of numerical integration. Many variations exist. Heston derived the
initial valuation formula from a probabilitic interpretation in (Heston, 1993), while Carr and
Madan developped a more direct Fourier transform approach, which enabled the use of the
fast Fourier transform (FFT) algorithm in (Carr and Madan, 1999). Their damping parameter
α also spun off a family of alternative valuation formulae, with better convergence properties
than the original Heston formula. The Lewis formula, corresponding to α = −1

2 is particularly
popular as it is simple to evaluate, is well defined everywhere and has quadratic denominator
(Lewis, 2001). We should also mention the choice α = −1 proposed by Attari, which requires
a bit more care around zero, and the choice α = 0 studied by Joshi and Yang (2011). Joshi
and Yang combined this specific choice of α along with matching the value and first derivative
of the characteristic function with a Black-Scholes control variate, which they found was
improving the efficiency of real-time calibration. A procedure to find the optimal (strike and
maturity dependent) α, leading to the ability of pricing extremely out-of-the-money options,
including those whose prices are beyond machine epsilon, is described in (Lord and Kahl,
2007).

In terms of integration, Kilin (2007) showed that the FFT method was not competitive
against a simple quadrature with cached characteristic function values. There is however
no real consensus on the quadrature to be used. Andersen and Piterbarg advocate for the
simplest trapezoidal method with a good truncation (Andersen and Piterbarg, 2010). Kahl
and Jaeckel, as well as Lord and Kahl propose the adaptive Gauss-Lobatto of Gander and
Gautschi combined with a log-transform (Kahl and Jäckel, 2005), while Joshi and Yang use
the Gauss-Laguerre quadrature.

The Filon quadrature is particularly suited to the computation Fourier integrals (Filon,
1928; Tuck, 1967). A generalisation of this method has been applied to the problem of pricing
options under the displaced lognormal Heston model in (Dickinson, 2011). Their proposed
algorithm however involves many specific choices of parameters. In this paper, we will look
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at a particularly simple and effective adaptive Filon method, where the adaptive integration
points are reusable across strikes, for a given maturity. A similar technique has been used
in seismology in (Hai-Ming and Xiao-Fei, 2001) and in finance the context of volatility swap
pricing in (Le Floc’h, 2015). We will evaluate its behavior against popular Heston integration
methods on challenging Heston parameters. Finally, we will take a look at the full volatility
surface calibration performance and stability.

While this paper focuses on the Heston stochastic volatility model, the proposed technique
is more general and can be applied other models with closed form characteristic functions like
Bates (Bates, 1996), Schobel-Zhu (Schöbel and Zhu, 1999), or Double-Heston (Christoffersen
et al., 2009).

2. The Filon quadrature

The Filon quadrature is used to evaluate integrals such as

Ic =

∫ b

a
f(p) cos(xp)dp , Is =

∫ b

a
f(p) sin(xp)dp. (1)

When x is not small, the rapid oscillations are particularly challenging for ordinary quadrature
formulae such as Simpson’s. The idea of Filon is to fit f by a parabola at three equidistant
points as in Simpson’s method, but to integrate exactly the terms in pk cos(xp), pk sin(xp).
Applied to a subdivision in 2n parts of the original interval [a, b] this results in the following
formula:

Ic = h {α [f(b) sin(xb)− f(a) sin(xa)] + βCce + γCco} , (2)

Is = h {−α [f(b) cos(xb)− f(a) cos(xa)] + βCse + γCso} , (3)

where h = b−a
2n , θ = hx, Cce is the sum of even ordinates of f(p) cos(px) less half the end

ordinates, Cco is the sum of odd ordinates of f(p) cos(px), Cse is the sum of even ordinates of
f(p) sin(px) less half the end ordinates, Cso is the sum of odd ordinates of f(p) sin(px), and

θ3α = θ2 + θ sin θ cos θ − 2 sin2 θ, (4)

θ3β = 2
[
θ
(
1 + cos2 θ

)
− 2 sin θ cos θ

]
, (5)

θ3γ = 4 [sin θ − θ cos θ] . (6)

Chase and Fosdick (1969) derived a robust numerical algorithm taking special care of the case
where θ is small. A more thorough description of the Filon quadrature is presented in Tranter
(1951).

3. Flinn’s improvement

Instead of fitting a quadratic as in Filon’s quadrature, Flinn (1960) uses a fifth-order poly-
nomial to fit the middle and end points values and first derivatives, resulting not only in a
higher order quadrature, but also in one that works better on larger intervals. The resulting
formula is not much more complicated:

Ic = h
{
S [f(b) sin(xb)− f(a) sin(xa)] + hP

[
f ′(b) cos(xb)− f ′(a) cos(xa)

]
+RCce + hQC ′se +NCco + hMC ′so

}
, (7)

Is = h
{
−S [f(b) cos(xb)− f(a) cos(xa)] + hP

[
f ′(b) sin(xb)− f ′(a) sin(xa)

]
+RCse − hQC ′ce +NCso − hMC ′co

}
, (8)
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where C ′ce is the sum of even ordinates of f ′(p) cos(px) less half the end ordinates, C ′co is the
sum of odd ordinates of f ′(p) cos(px), C ′se is the sum of even ordinates of f ′(p) sin(px) less
half the end ordinates, C ′so is the sum of odd ordinates of f ′(p) sin(px). We refer the reader
to Flinn’s paper for the values of the constants M,N,P,Q,R, S. It also provides expansions
useful for the case where θ is small.

4. Characteristic Functions

4.1 Heston

The Heston stochastic volatility model of an asset F is described by the following system of
stochastic differential equations (Heston, 1993):

dF =
√
vFdWF (9)

dv = κ(θ − v)dt+ σ
√
vdWv (10)

with dWFdWv = ρdt. For an equity of spot S, and maturity T , F represents the forward to
maturity F (t) = S(t)e(r−q)(T−t) with r the relevant interest rate, and q the dividend yield.

In order to avoid complex discontinuities, we rely on Gatheral formulation for the normalized
Heston characteristic function (Lord and Kahl, 2006):

φ(z) = e
v0
σ2

1−e−DT

1−Ge−DT (κ−iρσz−D)+ κθ

σ2

(
(κ−iρσz−D)T−2 ln( 1−Ge−DT

1−G )
)

(11)

with

D =
√

(κ− iρσz)2 + (z2 + iz)σ2 (12)

G =
κ− iρσz −D
κ− iρσz +D

(13)

The standard characteristic function is then just E[eiz ln(F (T ))] = eiz ln(F (0))φ(z).

4.2 Black-Scholes

The normalized Black-Scholes characteristic function with volatility σB is simply:

φB(z) = e−
1

2
σ2
BT (z2+iz) (14)

We will see it can be used as control variate for other stochastic volatility models.

5. Pricing formulae

Originally, Heston proposed a Black-Scholes like formula in (Heston, 1993). The vanilla call
option price can be expressed as (Carr and Madan, 1999):

C(F,K, T ) = Fe−rT
[

1

2
+

1

π

∫ ∞
0
<
(
e−iukφ(u− i)
iuφ(−i)

)
du

]
+Ke−rT

[
1

2
+

1

π

∫ ∞
0
<
(
e−iukφ(u)

iu

)
du

]
(15)



April 15, 2016 17:23 lefloch˙heston˙filon

4 Fabien Le Floc’h

where k = ln(K). As the integrand is sometimes highly oscillating, a formula based on a
damped option price is proposed in (Carr and Madan, 1999)1:

C(F,K, T ) = Rα(F,K) + F
e−αxe−rT

π

∫ ∞
0
<
(
e−iux

φ(u− (α+ 1)i)

(α+ iu)(α+ 1 + iu)

)
du (16)

where α is a damping parameter, x = ln(KF ), and Rα(F,K) =

e−rT
[
F · 1α≤0 −K · 1α≤−1 − 1

2(F · 1α=0 −K · 1α=−1)
]
. A method to find the optimal

α, allowing to price extremely out-of-the-money options is described in (Lord and Kahl,
2007). For put options, one can just use the same formula, but with α < −1.

A popular alternative formulation with a quadratic denominator was found by Lewis in
(Lewis, 2001):

C(F,K, T ) = Fe−rT −
√
FKe−rT

π

∫ ∞
0

<
(
e−iuxφ(u− i

2)
)

u2 + 1
4

du (17)

This is equivalent to taking α = −1
2 in Carr-Madan formula. It is a method of choice in

(Andersen and Piterbarg, 2010), where they introduce a Black-Scholes control variate to
significantly improve convergence:

C(F,K, T ) = BS(F,K, T,
√
v0) +

√
FKe−rT

π

∫ ∞
0
<

(
e−iux

φB(u− i
2)− φ(u− i

2)

u2 + 1
4

)
du (18)

Put options can be priced with the same formula but using the Black-Scholes put option
price instead of the call option price. Finally, a recent formula with Black-Scholes control-
variate is studied in (Joshi and Yang, 2011).

C(F,K, T ) = BS(F,K, T, σB) +
e−rT

π

∫ ∞
0
<
(
e−iux

φB(u− i)− φ(u− i)
u(u− i)

)
du (19)

This is similar to taking α = 0 in Carr-Madan formula. The authors also find that the optimal
choice of volatility σB used in the control variate corresponds to φ′B(−i) = φ′(−i). Without
this choice of control variate, the formula would require special treatment at 0.

5.1 Truncation

5.1.1 A domain transformation

One immediate issue with the integration is the infinity of the range of integration. One
possibility is to use a log transform z(u) as proposed in (Kahl and Jäckel, 2005; Lord and
Kahl, 2007) combined with some adaptive integration algorithm, for example Gauss-Lobatto.
Defining:

u(z) = − ln(z)

C∞
, (20)

the Lewis pricing formula can be rewritten as:∫ ∞
0

<
(
e−iuxφ(u− i

2)
)

u2 + 1
4

du =

∫ 1

0

<
(
e−iu(z)xφ(u(z)− i

2)
)

(u(z)2 + 1
4)(u(z)C∞)

dz. (21)

1This is not strictly the Carr-Madan formula: it is scaled by the forward.
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The constant C∞ is chosen so that the transformed variable z(u) has same asymptotic
behavior as the characteristic function at ∞:

lim
u→+∞

1

u
ln(φ(u− (α+ 1)i)− φB(u− (α+ 1)i)) = −(C∞ + iD∞), (22)

with

C∞ =
v0 + κθT

σ

√
1− ρ2 , (23)

D∞ =
v0 + κθT

σ
ρ. (24)

This can be applied to any of the formulae.

5.1.2 Andersen-Piterbarg approach to Lewis

Another possibility is to find a good truncation and integrate directly as proposed in (An-
dersen and Piterbarg, 2010), relying on the following approximation when umax is sufficiently
large:

∫ ∞
umax

∣∣∣∣∣φ(u− i
2)− φB(u− i

2)

u2 + 1
4

∣∣∣∣∣ du ≤ e−C∞umax

∫ ∞
umax

du

u2
(25)

Both methods actually rely on the same number C∞. For a relative tolerance of εu, the
truncation limit umax is found by solving:

e−C∞umax

umax
= εu (26)

or, to avoid numerical overflows:

−C∞umax − ln(umax) = ln(εu) (27)

5.1.3 Short expiries

The truncation can be invalid for short expiries (T < 0.1) as, then, e−D(umax)T 6� 1. A
Taylor expansion around T = 0 gives the Black-Scholes like characteristic function:

ln(φ(u)) = −1

2
v0T (u2 + iu) +O(T 2).

Then our approximation for short expiries is ûmax that solves:

−1

2
v0T û

2
max − ln(ûmax) = ln(εu). (28)

We found that a good practical rule for the full range of expiries is just to use
max(umax, ûmax).

Similarly, the log-transform is not always well behaved for short expiries. While the integrand
is well behaved around z = 0, this is not always true around z = 1 as the characteristic function
becomes Black-Scholes like for short expiries. In practice, an adaptive quadrature might require
the evaluation of the integrand at very closely spaced points near z = 1, sometimes of distance
smaller than the machine epsilon. As a work-around, we can follow Lord and Kahl proposed
transform for the Black-Scholes characteristic function and cap C∞ to:

C̄∞ =

√
v0T

2
. (29)

Let’s illustrate the importance of our modifications for the short expiries with the Heston
parameters v0 = 0.826, κ = 0.254, θ = 0.320, σ = 0.344, ρ = −0.557 on an option of maturity
T = 0.0182 with forward and strike F = 1000,K = 1400. Table 1 shows that without the
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adjustment to the truncation, the price is just wrong. The adjustment to C∞ is particularly
important for non adaptive quadratures: a Simpson quadrature with 10000 points has a huge
error (of around 40% of the reference price). The adaptive Gauss-Lobatto of Espelid (2003)
still works with the non capped C∞ but requires much more points (almost 10000).

Table 1.: Price with the Lewis formula and Black-Scholes control variate with the following
Heston parameters: v0 = 0.826, κ = 0.254, θ = 0.320, σ = 0.344, ρ = −0.557 on an option of

maturity T = 0.0182 with forward and strike F = 1000,K = 1400.

Quadrature Points Truncation Price
Simpson 10000 umax = 12.69 0.0651248
Simpson 10000 ûmax = 56.04 0.1073414
Simpson 10000 None / C∞ = 1.998 0.0685957
Simpson 10000 None / C̄∞ = 0.086 0.1073414

Gauss-Lobatto 1487 (Adaptive) ûmax = 56.04 0.1073414
Gauss-Lobatto 9107 (Adaptive) None / C∞ = 1.998 0.1073414
Gauss-Lobatto 5087 (Adaptive) None / C̄∞ = 0.086 0.1073414

This is a key weakness of the domain transformation. While our fix improves the behaviour
in general, it is not clear if it stays always well behaved near z = 0, and our choice of applying
the cap for T < 0.1 is somewhat arbitrary.

Interestingly, on this example, the non-transformed, truncated integral is much faster to
evaluate with Gauss-Lobatto than the log-transformed equivalent. We found this to be gener-
ally the case for short expiries, while for longer expiries, the log transform was more beneficial.

5.2 Filon on the Lewis Formula

The Lewis formula (Equation 17) can be rewritten as:

C(F,K, T ) = Fe−rT −
√
FKe−rT

π

∫ ∞
0

<
(
φ(u− i

2)
)

u2 + 1
4

cos(ux) +
=
(
φ(u− i

2)
)

u2 + 1
4

sin(ux)du (30)

To compute the vanilla option price, we can therefore apply the cos and sin Filon quadratures
respectively to the functions

f(u) =
<
(
φ(u− i

2)
)

u2 + 1
4

, g(u) =
=
(
φ(u− i

2)
)

u2 + 1
4

. (31)

A significant property of the functions f(u) and g(u) is that they are not dependent on the
log-moneyness x.

5.3 Flinn on the Lewis Formula

It is not much more costly to evaluate both the characteristic function φ and its derivative φ′.
The first derivative can be computed at the same time through simple analytical differentia-
tion, reusing most of the costly intermediate variables.

To compute the vanilla option price, we can therefore apply the cos and sin Flinn quadratures
respectively to the functions

f(u) =
<
(
φ(u− i

2)
)

u2 + 1
4

, f ′(u) =
<
(
φ′(u− i

2)
)

u2 + 1
4

− 2
<
(
φ(u− i

2)
)(

u2 + 1
4

)2 u (32)
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and

g(u) =
=
(
φ(u− i

2)
)

u2 + 1
4

, g′(u) =
=
(
φ′(u− i

2)
)

u2 + 1
4

− 2
=
(
φ(u− i

2)
)(

u2 + 1
4

)2 u. (33)

5.4 Making it adaptive

The similarity between Simpson’s and Filon’s method suggest to apply the same adaptive tech-
nique as for Simpson. We simply apply the adaptive Simpson algorithm to the computation
of the two integrals

Īc =

∫ umax

0
f(u)du , Īs =

∫ umax

0
g(u)du (34)

and record the abscissae ui and function values (fi, gi) (eventually along with the derivative
values) in a map structure. We then sort the values by abscissa and use the Filon or the
Flinn quadrature to the intervals defined by the abscissae, three points by three points. In
practice, the Filon constants α, β, γ can be reused across adjacent intervals, unless the step
size has changed. The cost of evaluating the trigonometric functions can be further reduced
by taking advantage of the identities cos(u + θ) = cos(u) cos(θ) − sin(u) sin(θ), sin(u + θ) =
cos(u) sin(θ) + sin(u) cos(θ) and evaluating the cos and sin integrals together.

The underlying assumption is that an adaptive Simpson algorithm is going to approximate
f and g well enough so that the Filon or the Flinn quadrature on the same points is accurate
enough. The two integrals of equation (34) correspond to the Lewis formula at-the-money,
that is, where x = 0.

There are various adaptive Simpson algorithms. A somewhat popular one, squank, is based
on (Lyness, 1969; 1970), which refines the Simpson method with a Richardson extrapolation
and uses interval bisection. Gander and Gautschi (2000) propose an alternative algorithm
adaptsim with a different local error control relying on an initial estimate of the integral by
a five points Monte-Carlo integration. Espelid (2003) wrote a more recent algorithm modsim

using directly a five points Newton-Cotes formula (which is equivalent to the extrapolated
Simpson formula) with refined local error control based on Null rules. This later algorithm
can be transformed to a globally adaptive algorithm the same way the author transforms its
locally adaptive coteda to the globally adaptive coteglob.

While, in practice, the choice of adaptive algorithm matters little for the stability of the
overall adaptive Filon method, we found that Gander and Gautchi adaptsim was in general
failing much more than squank or modsim algorithms when applied directly to the Lewis
formula instead of the Filon reduction. This is mostly due to a bad initial estimate of the
integral. Furthermore modsim algorithm was in general faster than squank (requiring less
points), even more so with global error control.

The precomputed abscissae and function values can be reused to value options at different
strikes. In contrast with the standard adaptive quadrature methods applied directly to the
Lewis formula, the adaptivity is independent of the strike here.

6. Numerical results

6.1 Lewis and the optimal α

Combined with the adaptive Filon quadrature, it could be interesting to use the optimal α
for at-the-money options instead of Lewis choice α = −1

2 . Using Lord and Kahl optimal α
search method described in (Le Floc’h, 2013), we find out that the optimal at-the-money α is
in reality never too far from Lewis choice on a wide variety of Heston parameters (Table 2).
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Table 2.: At-the-money optimal α for various Heston parameters.

T v0 κ θ σ ρ optimal α
0.05 0.090 1.000 0.090 1.000 -0.300 -0.500920
1.00 0.090 1.000 0.090 1.000 -0.300 -0.513340
5.00 0.090 1.000 0.090 1.000 -0.300 -0.526311
0.02 0.826 0.254 0.320 0.344 -0.557 -0.500226
20.0 0.826 0.254 0.320 0.344 -0.557 -0.559124
0.10 0.0225 0.100 0.010 2.000 0.500 -0.493715
1.00 0.0225 0.100 0.010 2.000 0.500 -0.434065
10.0 0.0225 0.100 0.010 2.000 0.500 -0.500000

6.2 Challenging Heston parameters

6.2.1 Medium maturity

We consider an option of maturity T = 1 and strike K = 0.25 on an asset following the
Heston stochastic volatility model with parameters v0 = 0.0225, κ = 0.1, θ = 0.01, σ = 2.0, ρ =
0.5, F = 1. The option is therefore very out of the money. We have set the truncation level at
10−8, and use the same accuracy for the various adaptive quadratures considered. Except for
the Cos method of Fang and Oosterlee (2008) and the Lord and Kahl optimal α method, we
rely on the Lewis formula with control variate.

Under those settings, Table 3 shows that the doubly adaptive Newton-Cotes quadrature
coteda of Espelid (2003) has a very high error, well above the tolerance for a tolerance of
10−8 (but is fine with a tolerance of 10−7 or 10−9). The adaptive Gauss-Lobatto modlob has
no such issue but requires a large number of points (over 10000). The Cos method requires
a truncation at L = 30 to achieve a reasonable accuracy with 1000 points, well above the
recommended L = 8 of their paper. The Flinn method combined with a globally adaptive
Simpson quadrature requires on 485 points to achieve an accuracy of 10−10 per unit notional,
which is as accurate as the direct modlob with more than 10000 points.

Table 3.: 1Y Put option of notional 100,000 and strike 25% with Heston parameters
v0 = 0.0225, κ = 0.1, θ = 0.01, σ = 2.0, ρ = 0.5 under various numerical methods.

Method Tolerance Points Price
modlob Lord-Kahl 1e-8 7947 119.385327

coteda 1e-8 1361 99.666129
modlob 1e-8 10987 119.385324

modlob Log 1e-8 9527 119.385347
modsim 1e-8 8853 119.324143

modsim Filon 1e-8 733 119.385917
globsim Flinn 1e-8 485 119.385352

Cos L=12 1000 0.0
Cos L=16 1000 123.033165
Cos L=30 1000 119.387924

Interestingly, using the adaptive Simpson modsim directly on the Lewis formula requires
many more points than our adaptive Flinn method (close to 9000) for a lower overall accuracy.

6.2.2 Short maturity

We use here the same parameters as in table 1 but set the tolerance at 10−8 instead of 10−12.
The Gauss-Lobatto quadrature requires much less points with this tolerance level. Table 4
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shows that the adaptive Flinn method still requires around four times less points than the
direct modlob.

Table 4.: Call optionof maturity T = 0.0182 with forward and strike F = 1000,K = 1400
and Heston parameters v0 = 0.826, κ = 0.254, θ = 0.320, σ = 0.344, ρ = −0.557 under various

numerical methods.

Method Tolerance Points Price
modlob 1e-8 547 0.107341552

modlob Log 1e-8 737 0.107341448
modsim 1e-8 645 0.107341552

modsim Filon 1e-8 329 0.107341554
globsim Flinn 1e-8 125 0.107341552

On options of longer maturities the number of points used by modlob and by our adaptive
Flinn is more similar.

6.3 Performance

Let us look at the performance and accuracy of the various quadratures, using the Lewis
formula with control variate. We use an accuracy of 1E-6 for the adaptive quadratures while
the truncation is done for a relative tolerance of 1E-9. The reference is Lord-Kahl with an
adaptive quadrature of accuracy 1E-10.

We price hundred put options of different strikes but same maturity with standard Heston
parameters for an equity. Table 5 shows that the adaptive Flinn method is up to ten times
faster than a direct adaptive Gauss-Lobatto quadrature. This should not be too surprising
since the adaptivity is independent of the strike with the Flinn method, but not with the
direct approach.

Table 5.: Performance and Accuracy of the various integrations to price 100 put options of
strikes between 0.4 and 1.6 with the following Heston parameters:

κ = 1.0, θ = 0.1, σ = 1.0, v0 = 0.1, ρ = −0.9.

Method RMSE Total Time(s)
Maturity of 2 weeks

modlob Log 1.74E-11 0.022
modlob 2.91E-11 0.015

modsim Filon 1.82E-10 0.004
globsim Flinn 4.15E-12 0.002

Maturity of 2 years
modlob Log 2.27E-9 0.011
modlob 4.45E-12 0.008

modsim Filon 7.29E-10 0.005
globsim Flinn 6.57E-12 0.003
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6.4 Heston Calibration

6.4.1 Error measure

The calibration of the Heston model consists in minimizing the difference between the
market implied volatilities (or option prices) and the model implied volatilities (or option
prices).

Our implied volatility error measure will simply be the weighted root mean square error in
implied volatilities:

Mσ =

√∑N
i=0w

2
i

(
σHi − σMi

)2√∑N
i=0w

2
i

(35)

where N is the total number of option quotes we calibrate against and σHi is the Black implied
volatility1 obtained from the Heston model price and σMi is the market implied volatility. In
our numerical examples, we will just take wi = 1.

An alternative is to use the root mean square error in option prices:

MV =

√∑N
i=0w

2
i

(
V H
i − VM

i

)2√∑N
i=0w

2
i

(36)

where V H
i is the Heston model option price and VM

i is the market option price. We use only
out-of-the-money option prices: Calls for F ≤ K and Puts for F > K. With equal weights,
such a measure results in a significantly low quality of fit for shorter maturities as option
prices increase with the maturity. We will instead use an inverse vega weighting:

wi = min

(
1

νMi
,
1000

F

)
(37)

where νMi = ∂VMi
∂σ is the Black Vega corresponding the market option price VM

i . The measure
should then be not so different from the measure on volatilities Mσ with equal weights as the
partial derivative towards a model parameter pj can be written as:

∂V

∂pj
=
∂V

∂σ

∂σ

∂pj
. (38)

The cap to 1000
F is necessary to avoid taking into account too out-of-the money prices, which

won’t be all that reliable numerically.

6.4.2 A smart initial guess

From five well chosen option implied volatilities, corresponding to the shortest-expiry at-
the-money volatility, 2 calendar spreads between t1 and t2 of log-moneyness −x0 and x0, Forde
et al. (2012) show how find the Heston parameters by solving a simple linear system for a
Heston small-time expansion that passes exactly through those points.

Chosen option strikes and maturities can make a big difference on the initial guess. A good
rule is +/- 20% (and sometimes +/- 5%) around the money and discard the first maturities.
In practice, we found that taking the best guess of the two log-moneyness +/-5% and +/-20%
was successfull as initial guess on a wide variety of surfaces. When the options are chosen closer
to the money, we noticed that a virtual butterfly spread arbitrage could arise, modifying the

1A fast and robust algorithm to obtain the implied volatility from an option price is the one of Jäckel (2013). When no
implied volatility corresponds to the model option price, which can happen because of numerical error, we just fix the
implied volatility to zero.
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formula to ensure the value of the butterfly (noted C in (Forde et al., 2012, p. 8)) is positive
was enough to make the algorithm robust.

We can then apply a Levenberg-Marquardt minimizer (Moré, 1978) with our choice of error
measure to find the optimal Heston parameters for given market option prices.

An alternative would be to rely on the differential evolution algorithm of Storn and Price
(1997) to find a good initial guess. This has however the risk to be less stable and is much
slower than the smart initial guess that was found to work well in general in (Le Floc’h, 2013).

6.4.3 Results

We first consider the market data of Kahalé (2004), r = 0.06. We use a relative tolerance of
10−6 for the adaptive quadratures, and a truncation tolerance of 10−9. We remove the options
of price (normalized by the spot) lower than the quadrature tolerance from the data. On this
data, this corresponds to a single point of expiry T = 0.175 and strike K = 826. This cleaning
step is particularly important to ensure the stability of the calibration using the volatility
error measure.

The calibration of Heston using the volatility error measure Mσ is not slower than the
calibration using the inverse vega weighted price error measure MV (Table 6 vs Table 7). It
could actually be faster when the initial guess is not as good. But it is also less stable: slightly
different Heston parameters (especially v0 and κ) can lead to a very similar error measure
and as a consequence, the calibrated parameters can fluctuate depending on the method or
its tolerance level, this is especially true if small option prices are not filtered out. In (Le
Floc’h, 2013) it was found necessary to add more weights for near-the-money options in order
to stabilise the calibration.

Table 6.: Heston calibration under the volatility error measure for the option data of Kahalé
(2004).

Method v0 κ θ σ ρ RMSE Time(s)
Guess 0.0128 1.581 0.0329 0.381 -0.400 N/A N/A

globsim 0.0095 5.446 0.0232 0.933 -0.584 5.199E-3 0.79
modlob 0.0095 5.441 0.0232 0.932 -0.584 5.199E-3 0.38

modlob Log 0.0095 5.436 0.0232 0.932 -0.584 5.199E-3 0.57
globsim Flinn 0.0095 5.441 0.0232 0.932 -0.584 5.199E-3 0.14
modsim Filon 0.0095 5.403 0.0232 0.927 -0.584 5.200E-3 0.15

The calibration using the weighted price error measure is much more stable, we found that
changing the weights to increase the importance of near-the-money options did not change
much the outcome of the calibration.

Table 7.: Heston calibration under the weighted price error measure for the option data of
Kahalé (2004).

Method v0 κ θ σ ρ RMSE Time(s)
Guess 0.0128 1.581 0.0329 0.381 -0.400 N/A N/A

globsim 0.0131 2.421 0.0243 0.455 -0.644 1.445E-2 0.75
modlob 0.0131 2.421 0.0243 0.455 -0.644 1.445E-2 0.36

modlob Log 0.0131 2.421 0.0243 0.455 -0.644 1.445E-2 0.62
globsim Flinn 0.0131 2.421 0.0243 0.455 -0.644 1.445E-2 0.13
modsim Filon 0.0131 2.421 0.0243 0.455 -0.644 1.445E-2 0.21

On a 2.5Ghz Intel Core i5-3210M with Go 1.6, the calibration with the adaptive Flinn
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method is between two times and six times faster than with modlob depending if we use the
truncation or the log-transformation.

As second example we consider SPX500 options in October 2010. The calibration on equally
weighted volatilities would be even more unstable without removing too small option prices
from the data. With the cleaning up procedure, the calibration results are very stable and
slightly faster than the calibration on the weighted price error measure (Table 8 against Table
9).

Table 8.: Heston calibration under the volatility error measure for options on SPX500 in
October 2010.

Method v0 κ θ σ ρ RMSE Time(s)
Guess 0.0736 1.303 0.0817 0.214 -0.755 N/A N/A

globsim 0.0718 1.542 0.0762 0.582 -0.352 4.907E-3 0.76
modlob 0.0718 1.542 0.0762 0.582 -0.352 4.907E-3 0.36

modlob Log 0.0718 1.542 0.0762 0.582 -0.352 4.907E-3 0.81
globsim Flinn 0.0718 1.542 0.0762 0.582 -0.352 4.907E-3 0.13
modsim Filon 0.0718 1.542 0.0762 0.582 -0.352 4.907E-3 0.27

Again, the price error measure makes the problem better behaved (we could even not filter
out any option if desired as the inverse vega cap is going to minimize the impact of very small
option prices in the calibration). The adaptive Flinn method is three to five times faster than
modlob.

Table 9.: Heston calibration under the price error measure for options on SPX500 in October
2010.

Method v0 κ θ σ ρ RMSE Time(s)
Guess 0.0736 1.303 0.0817 0.214 -0.755 N/A N/A

globsim 0.0714 1.559 0.0774 0.499 -0.358 4.244E-2 0.90
modlob 0.0714 1.559 0.0774 0.499 -0.358 4.244E-2 0.43

modlob Log 0.0714 1.559 0.0774 0.499 -0.358 4.244E-2 0.83
globsim Flinn 0.0714 1.559 0.0774 0.499 -0.358 4.244E-2 0.15
modsim Filon 0.0714 1.559 0.0774 0.499 -0.358 4.244E-2 0.26

7. Conclusion

We have described a simple adaptive Filon method with better performance against accuracy
behavior than popular alternatives to price options under the Heston model. It is particularly
interesting in the context of model calibration where many options of different strike but same
maturity are priced.

Being adaptive, it does not suffer from having to choose a non obvious parameter value,
typically the number of points of non adaptive quadratures, or the truncation level for the
Cos method.

The technique can easily be transposed to any stochastic volatility model that possesses an
analytical characteristic function.
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Appendix A. Example code

For illustration purpose, we detail here Octave code (also working with Matlab) for pricing
vanilla options under the Heston model using the adaptive Flinn quadrature. It relies on the
adaptive Simpson modsim available on Espelid website.

Note that the code is not optimized at all. Our performance tests are run with a more
optimized implementation in the Go language.
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Listing 1: Matlab/Octave code for the Heston and Black characteristic functions as used in
the Lewis formula

function [value , derivative] = hestonLewisLog(T,kappa ,theta ,v0,omega ,rho , z)
alphahat = -omega*omega*(z .*z+0.25); alphahat_d = -2*omega*omega*z;
beta = kappa -0.5* omega*rho -omega*rho*z*1i; beta_d = -omega*rho*1i;
Dsq = beta .*beta - alphahat; Dsq_d = 2* beta_d .*beta - alphahat_d;
D = sqrt(Dsq); D_d = 0.5 * Dsq_d ./ D;
flag = abs(real(alphahat)) < 1e-4*abs(beta).^2;
betamD = flag .*( alphahat ./ (beta + D)) + (!flag).*( beta - D);
betamD_d = flag .*(( alphahat_d - alphahat .*( beta_d+D_d) ./( beta+D)) ...
./ (beta + D)) + (!flag) .*( beta_d - D_d);
G = betamD ./ (beta + D);
G_d = (betamD_d - betamD .*( beta_d+D_d) ./( beta+D)) ./ (beta + D);
eDT = exp(-D * T); eDT_d = -D_d .* T .* eDT;
oneGeDT = 1.0 - G .*eDT; oneGeDT_d = -G .*eDT_d - G_d .*eDT;
logv = oneGeDT ./ (1 - G);
logv_d = (oneGeDT_d + oneGeDT .* G_d ./ (1-G)) ./ (1 - G);
logv_d = logv_d ./ logv; logv = log(logv);

Afactor = kappa*theta/(omega*omega);
A = (betamD*T - 2*logv) * Afactor; A_d = (betamD_d*T - 2* logv_d) * Afactor;
Bfactor = 1.0/ omega ^2;
Bratio = (1.0 - eDT) ./ oneGeDT;
Bratio_d = (-eDT_d - Bratio .* oneGeDT_d) ./ oneGeDT;
B = Bratio .* betamD * Bfactor;
B_d = (Bratio_d .* betamD + betamD_d .* Bratio) * Bfactor;
value = A + B*v0; derivative = A_d + B_d*v0;

end

function [phi , phi_d] = hestonLewisCF(T, kappa , theta , v0, omega , rho , u)
[arg , arg_d] = hestonLewisLog(T, kappa , theta , v0, omega , rho , u);
phi = exp(arg); phi_d = arg_d .* phi;
x = -u .*u - 0.25; # for the Black variate with variance v0*T
logPhib = 0.5 * v0 * T * x; logPhib_d = -v0 * T * u;
phib = exp(logPhib); phib_d = phib .* logPhib_d;
phi -= phib; phi_d -= phib_d;

end

function [c,s, c_d , s_d]= integrandLewisCosSin(T,kappa ,theta ,v0,omega ,rho , x)
[phi ,phi_d] = hestonLewisCF(T,kappa ,theta ,v0,omega ,rho , x);
frac = 1.0 ./ (0.25 + x .*x);
c = real(phi) .* frac; s = imag(phi) .* frac;
c_d = (real(phi_d) - real(phi) .*frac*2 .* x) .* frac;
s_d = (imag(phi_d) - imag(phi) .*frac*2 .* x) .* frac;

end

Listing 2: Flinn integration

function integral = integrateFlinn(A, t)
#A has 2n rows of 5 columns: x, f(x), g(x), f’(x), g’(x)

integral = 0.0;
for i = 1+ 2*(0:( rows(A)/2-1))

c0 = A(i,:); c1 = A(i+1,:); c2 = A(i+2,:);
x0 = c0(1); fcos0 = c0(2); fsin0 = c0(3); fpcos0 = c0(4); fpsin0 = c0(5);
x1 = c1(1); fcos1 = c1(2); fsin1 = c1(3); fpcos1 = c1(4); fpsin1 = c1(5);
x2 = c2(1); fcos2 = c2(2); fsin2 = c2(3); fpcos2 = c2(4); fpsin2 = c2(5);
h = (x2 - x0) * 0.5; theta = t .* h; theta2 = theta .^2;
if abs(theta) <= 0.8

M = theta .* ( -16.0/105.0 + theta2 .*(8.0/945+ theta2 .* ( -2.0/10395+ theta2 .*
(1.0/405405.0 - theta2 /48648600.0))));

N = 16.0/15.0 + theta2 .* ( -8.0/105+ theta2 .* (2.0/945 + theta2 .* ( -1/31185.0
+ theta2 / 3243240.0)));

P = -1.0/15.0 + theta2 .* (2.0/105+ theta2 .* ( -1.0/315 + theta2 .* (2.0/7425+
theta2 *( -62.0/4729725.0))));

Q = theta .* ( -8/105.0 + theta2 .*(16.0/945+ theta2 .* ( -104.0/51975+ theta2 .*
(256.0/2027025 - theta2 * 16.0/3274425))));

R = 14.0/15.0 + theta2 .* ( -16.0/105.0+ theta2 .* (22.0/945+ theta2
.*( -304.0/155925+ theta2 * (268.0/2837835))));

S = theta .* (19.0/105 + theta2 .* ( -2.0/63+ theta2 .* (1.0/275+ theta2 .*
( -2.0/8775+ theta2 * 34.0/3869775))));
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else
sint = sin(theta); cost = cos(theta);
theta4 = theta2 .^2; theta6 = theta2 .* theta4;
M = (16* theta .* (15- theta2) .* cost + 48 * (2* theta2 -5).* sint) ./ theta6;
N = (16* theta .* (3-theta2) .* sint - 48* theta2 .*cost) ./ theta6;
P = (2* theta .* (theta2 -24) .* sint .* cost + 15*( theta2 -4).* cost .* cost +

theta4 - 27* theta2 + 60) ./ theta6;
Q = (2 * (theta .*(12 -5* theta2) + 15*( theta2 -4) .*sint .*cost + 2 .* theta .*

(24- theta2) .* cost .^2)) ./ theta6;
R = (2 * (theta .* (156 -7* theta2) .* sint .* cost + 3 * (60 -17* theta2) .*

cost .* cost - 15*(12 -5 .* theta2))) ./ theta6;
S = (theta .*( theta4 +8*theta2 -24) + theta .* (7*theta2 -156) .* cost .* cost +

3*(60 -17 .* theta2) .* sint .* cost)./ theta6;
end
st0 = sin(t * x0); st1 = sin(t * x1); st2 = sin(t * x2);
ct0 = cos(t * x0); ct1 = cos(t * x1); ct2 = cos(t * x2);

s2n = 0.5 * fsin0 .* st0 + 0.5 * fsin2 .* st2;
sp2n = 0.5 * fpsin0 .* ct0 + 0.5 * fpsin2 .* ct2;
s2nm1 = fsin1 .* st1; sp2nm1 = fpsin1 .* ct1;
integral += h .* (S .* (-fsin2 .* ct2+fsin0 .* ct0) + h .* P .* (fpsin2 .* ...

st2 -fpsin0 .* st0) + R .*s2n - h .*Q .* sp2n + N .* s2nm1 - h .* M .* sp2nm1);

c2n = 0.5 * fcos0 .* ct0 + 0.5 * fcos2 .* ct2;
cp2n = 0.5 * fpcos0 .* st0 + 0.5 * fpcos2 .* st2;
c2nm1 = fcos1 .* ct1; cp2nm1 = fpcos1 .* st1;
integral += h .* (S .*( fcos2 .*st2 -fcos0 .*st0) + h .*P .*( fpcos2 .* ...

ct2 -fpcos0 .*ct0) + R .*c2n + h .*Q .*cp2n + N .* c2nm1 + h .*M .* cp2nm1);
end

end

function result=uniformIntegral(truncation , N, strike , forward , T,kappa ,theta ,v0,
omega ,rho)

k = log(strike/forward);
x = truncation/N*(0:N);
[c, s, c_d , s_d]= integrandLewisCosSin(T,kappa ,theta ,v0,omega ,rho , x);
M = [];
M(:,1) = x’; M(:,2) = c’; M(:,3) = s’; M(:,4) = c_d ’; M(:,5) = s_d ’;
result = integrateFlinn(M,k);

end

function [c,s] =integrandLewisCosSinCached(T,kappa ,theta ,v0,omega ,rho , x)
global A #A has 5 columns: x, f(x), g(x), f’(x), g’(x)
[c, s, c_d , s_d]= integrandLewisCosSin(T,kappa ,theta ,v0,omega ,rho , x);
xt = x; ct = c; st = s; c_dt=c_d; s_dt=s_d;
if columns(x) > 1 #quadrature processes in columns , we want rows

xt = x’; ct = c’; st = s’; c_dt = c_d ’; s_dt = s_d ’;
end
i = rows(A)+1; j = i+rows(xt) -1;
A(i:j,1) = xt; A(i:j,2) = ct; A(i:j,3)=st; A(i:j,4)=c_dt; A(i:j,5)=s_dt;

end

function result=adaptiveFlinn(truncation , strike , forward , T,kappa ,theta ,v0,omega ,
rho)

global A = []
integrandCos = @(x) nthargout (1, @integrandLewisCosSinCached , T,kappa ,theta ,v0,

omega ,rho , x);
integrandSin = @(x) nthargout (2, @integrandLewisCosSinCached , T,kappa ,theta ,v0,

omega ,rho , x);
value = modsim(integrandCos ,0, truncation ,1e-8);
value = modsim(integrandSin ,0,truncation ,1e-8);
A = unique(A,"rows"); #poor ’s man hashtable
sortrows(A,1);
result = integrateFlinn(A, log(strike/forward))

end

Listing 3: Price options with the Lewis integral with Black control variate.

function [priceCall ,pricePut ]=price(strike , fwd , df , v0 , T, integral)
d1 = 1.0/ sqrt(v0*T)*log(fwd/strike) + 0.5* sqrt(v0*T);
blackCall = fwd*normcdf(d1) - strike*normcdf(d1 -sqrt(v0*T));
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priceCall = df*(-sqrt(strike * fwd) / pi * integral + blackCall);
pricePut = -(fwd -strike)*df + priceCall;

end

Listing 4: Example use

v0 =0.826; kappa =0.254; theta =0.320; omega =0.344; rho = -0.557; T=0.0182;
strike =1400; forward =1000; truncation =44.123129; format long;
integral = uniformIntegral(truncation ,100, strike , forward , T,kappa ,theta ,v0 ,omega ,

rho)
[priceCall ,pricePut ]=price(strike , forward , 1.0, v0 , T, integral)
global A = [];
integralA = adaptiveFlinn(truncation , strike , forward , T,kappa ,theta ,v0,omega ,rho)
[priceCall ,pricePut ]=price(strike , forward , 1.0, v0 , T, integralA)


